THESIS AND DISSERTATIONS
2014 |
Antonio Carlos Nazare Junior A Scalable and Versatile Framework for Smart Video Surveillance Masters Thesis Federal University of Minas Gerais, 2014. Abstract | Links | BibTeX | Tags: ARDOP, Smart Surveillance, Surveillance Systems, VER+, Video Surveillance @mastersthesis{Nazare:2014:MSc, title = {A Scalable and Versatile Framework for Smart Video Surveillance}, author = {Antonio Carlos Nazare Junior}, url = {http://smartsenselab.dcc.ufmg.br/wp-content/uploads/2019/03/dissertation_2014_Antonio-1.pdf}, year = {2014}, date = {2014-09-05}, school = {Federal University of Minas Gerais}, abstract = {The availability of surveillance cameras placed in public locations has increased vastly in the last years, providing a safe environment for people at the cost of huge amount of visual data collected. Such data are mostly processed manually, a task which is labor intensive and prone to errors. Therefore, automatic approaches must be employed to enable the processing of the data, so that human operators only need to reason about selected portions. Focused on solving problems in the domain of visual surveillance, computer vision problems applied to this domain have been developed for several years aiming at finding accurate and efficient solutions, required to allow the execution of surveillance systems in real environments. The main goal of such systems is to analyze the scene focusing on the detection and recognition of suspicious activities performed by humans in the scene, so that the security staff can pay closer attention to these preselected activities. However these systems are rarely tackled in a scalable manner. Before developing a full surveillance system, several problems have to be solved first, for instance: background subtraction, person detection, tracking and re-identification, face recognition, and action recognition. Even though each of these problems have been researched in the past decades, they are hardly considered in a sequence. Each one is usually solved individually. However, in a real surveillance scenario, the aforementioned problems have to be solved in sequence considering only videos as the input. Aiming at the direction of evaluating approaches in more realistic scenarios, this work proposes a framework called Smart Surveillance Framework (SSF), to allow researchers to implement their solutions to the above problems as a sequence of processing modules that communicates through a shared memory. The SSF is a C++ library built to provide important features for a surveillance system, such as a automatic scene understanding, scalability, real-time operation, multi-sensor environment, usage of low cost standard components, runtime re-configuration, and communication control.}, keywords = {ARDOP, Smart Surveillance, Surveillance Systems, VER+, Video Surveillance}, pubstate = {published}, tppubtype = {mastersthesis} } The availability of surveillance cameras placed in public locations has increased vastly in the last years, providing a safe environment for people at the cost of huge amount of visual data collected. Such data are mostly processed manually, a task which is labor intensive and prone to errors. Therefore, automatic approaches must be employed to enable the processing of the data, so that human operators only need to reason about selected portions. Focused on solving problems in the domain of visual surveillance, computer vision problems applied to this domain have been developed for several years aiming at finding accurate and efficient solutions, required to allow the execution of surveillance systems in real environments. The main goal of such systems is to analyze the scene focusing on the detection and recognition of suspicious activities performed by humans in the scene, so that the security staff can pay closer attention to these preselected activities. However these systems are rarely tackled in a scalable manner. Before developing a full surveillance system, several problems have to be solved first, for instance: background subtraction, person detection, tracking and re-identification, face recognition, and action recognition. Even though each of these problems have been researched in the past decades, they are hardly considered in a sequence. Each one is usually solved individually. However, in a real surveillance scenario, the aforementioned problems have to be solved in sequence considering only videos as the input. Aiming at the direction of evaluating approaches in more realistic scenarios, this work proposes a framework called Smart Surveillance Framework (SSF), to allow researchers to implement their solutions to the above problems as a sequence of processing modules that communicates through a shared memory. The SSF is a C++ library built to provide important features for a surveillance system, such as a automatic scene understanding, scalability, real-time operation, multi-sensor environment, usage of low cost standard components, runtime re-configuration, and communication control. |
2014 |
Antonio Carlos Nazare Junior A Scalable and Versatile Framework for Smart Video Surveillance Masters Thesis Federal University of Minas Gerais, 2014. Abstract | Links | BibTeX | Tags: ARDOP, Smart Surveillance, Surveillance Systems, VER+, Video Surveillance @mastersthesis{Nazare:2014:MSc, title = {A Scalable and Versatile Framework for Smart Video Surveillance}, author = {Antonio Carlos Nazare Junior}, url = {http://smartsenselab.dcc.ufmg.br/wp-content/uploads/2019/03/dissertation_2014_Antonio-1.pdf}, year = {2014}, date = {2014-09-05}, school = {Federal University of Minas Gerais}, abstract = {The availability of surveillance cameras placed in public locations has increased vastly in the last years, providing a safe environment for people at the cost of huge amount of visual data collected. Such data are mostly processed manually, a task which is labor intensive and prone to errors. Therefore, automatic approaches must be employed to enable the processing of the data, so that human operators only need to reason about selected portions. Focused on solving problems in the domain of visual surveillance, computer vision problems applied to this domain have been developed for several years aiming at finding accurate and efficient solutions, required to allow the execution of surveillance systems in real environments. The main goal of such systems is to analyze the scene focusing on the detection and recognition of suspicious activities performed by humans in the scene, so that the security staff can pay closer attention to these preselected activities. However these systems are rarely tackled in a scalable manner. Before developing a full surveillance system, several problems have to be solved first, for instance: background subtraction, person detection, tracking and re-identification, face recognition, and action recognition. Even though each of these problems have been researched in the past decades, they are hardly considered in a sequence. Each one is usually solved individually. However, in a real surveillance scenario, the aforementioned problems have to be solved in sequence considering only videos as the input. Aiming at the direction of evaluating approaches in more realistic scenarios, this work proposes a framework called Smart Surveillance Framework (SSF), to allow researchers to implement their solutions to the above problems as a sequence of processing modules that communicates through a shared memory. The SSF is a C++ library built to provide important features for a surveillance system, such as a automatic scene understanding, scalability, real-time operation, multi-sensor environment, usage of low cost standard components, runtime re-configuration, and communication control.}, keywords = {ARDOP, Smart Surveillance, Surveillance Systems, VER+, Video Surveillance}, pubstate = {published}, tppubtype = {mastersthesis} } The availability of surveillance cameras placed in public locations has increased vastly in the last years, providing a safe environment for people at the cost of huge amount of visual data collected. Such data are mostly processed manually, a task which is labor intensive and prone to errors. Therefore, automatic approaches must be employed to enable the processing of the data, so that human operators only need to reason about selected portions. Focused on solving problems in the domain of visual surveillance, computer vision problems applied to this domain have been developed for several years aiming at finding accurate and efficient solutions, required to allow the execution of surveillance systems in real environments. The main goal of such systems is to analyze the scene focusing on the detection and recognition of suspicious activities performed by humans in the scene, so that the security staff can pay closer attention to these preselected activities. However these systems are rarely tackled in a scalable manner. Before developing a full surveillance system, several problems have to be solved first, for instance: background subtraction, person detection, tracking and re-identification, face recognition, and action recognition. Even though each of these problems have been researched in the past decades, they are hardly considered in a sequence. Each one is usually solved individually. However, in a real surveillance scenario, the aforementioned problems have to be solved in sequence considering only videos as the input. Aiming at the direction of evaluating approaches in more realistic scenarios, this work proposes a framework called Smart Surveillance Framework (SSF), to allow researchers to implement their solutions to the above problems as a sequence of processing modules that communicates through a shared memory. The SSF is a C++ library built to provide important features for a surveillance system, such as a automatic scene understanding, scalability, real-time operation, multi-sensor environment, usage of low cost standard components, runtime re-configuration, and communication control. |