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Abstract—Person re-identification (Re-ID) maintains a global
identity for an individual while he moves along a large area
covered by multiple cameras. Re-ID enables a multi-camera
monitoring of individual activity that is critical for surveillance
systems. However, the low-resolution images combined with the
different poses, illumination conditions and camera viewpoints
make person Re-ID a challenging problem. To reach a higher
matching performance, state-of-the-art methods map the data
to a nonlinear feature space where they learn a cross-view
matching function using training data. Kernel PCA is a sta-
tistical method that learns a common subspace that captures
most of the variability of samples using a small number of
vector basis. However, Kernel PCA disregards that images were
captured by distinct cameras, a critical problem in person Re-
ID. Differently, Hierarchical PCA (HPCA) captures a consensus
projection between multiblock data (e.g, two camera views),
but it is a linear model. Therefore, we propose the Kernel
Hierarchical PCA (Kernel HPCA) to tackle camera transition
and dimensionality reduction in a unique framework. To the
best of our knowledge, this is the first work to propose a kernel
extension to the multiblock HPCA method. Experimental results
demonstrate that Kernel HPCA reaches a matching performance
comparable with state-of-the-art nonlinear subspace learning
methods at PRID450S and VIPeR datasets. Furthermore, Kernel
HPCA reaches a better combination of subspace learning and
dimensionality requiring significantly lower subspace dimensions.

I. INTRODUCTION

Person re-identification (Re-ID) aims at maintaining a
unique identity for an individual while he moves across a large
area covered by multiple cameras with non-overlapping field-
of-views (FOV). Re-ID matches a probe image captured by
a camera A with stored images captured by a surveillance
camera B (gallery set). Thus, person Re-ID allows the super-
vision of subjects actions at indoor and outdoor environments
using a reduced number of surveillance cameras. Despite its
relevance for security and safety management, Re-ID is still
an open problem that has attracted researches attention in the
recent years [1], [2].

The infrastructure of installed surveillance cameras provides
low-resolution images where biometric cues, such as face and
iris, are unreliable. Therefore, most of the works in literature
use clothing appearance as the unique information to perform
person Re-ID. However, the same individuals captured by
two distinct cameras may have a dissimilar appearances due
the variations in resolution, pose, illumination and camera
viewpoint. These camera transition problems make person Re-
ID a challenging problem.

Re-ID methods address the camera transition problem using
a cross-view matching function [3]–[11] and robust feature
descriptors [12]–[17]. Works that focus on the feature rep-
resentation seek for subtle characteristics that are robust to
different camera conditions and discriminative, usually hand-
crafted descriptors. Then, they match probe and gallery images
using a similarity function computed without labeled image
pairs from both cameras (training data), which is known
as the unsupervised Re-ID setting. On the other hand, the
supervised Re-ID methods use training data to learn a deep
representation [18], a metric distance [3], [4], [7] or pro-
jections to a common subspace [5], [6], [19]. Particularly,
recent approaches have reported improved performance by
considering a nonlinear mapping to a high-dimensional feature
space through a kernel function [6], [19], which can be
explained by the impossibility of linear models to deal with
appearance changes caused by camera transitions.

Principal Component Analysis (PCA) is a statistical method
for unsupervised dimensionality reduction that linearly project
the data to a common latent subspace that explains most of
the variance among samples using a smaller set of vector
basis [20]. Classical applications of PCA in computer vision
include eigenfaces [21], eigengait [22] and eigentracking [23].
However, while many computer vision problems present a
strong nonlinear behavior, PCA is a linear model. Therefore,
Schölkopf et al. [20] proposed an extension of PCA that
nonlinearly maps the data at a high-dimensional feature space
and computes the principal components using a “kernel trick”,
which is known as Kernel PCA (KPCA).

Despite the success of PCA, there are few works that
address person Re-ID problem using PCA-based methods [24],
[25]. Martinel and Micheloni [25] use PCA to project image
dissimilarities onto a common subspace where they learn a
binary classifier to discriminate between same and not-same
classes. Differently, Yang et al. [24] learn for each gallery
image a nonlinear eigenspace appearance representation using
Kernel PCA and pixelwise color and spatial information. Then,
they project the probe image at each gallery-specific subspace
and compute the similarity using latent scores. However, the
direct comparison between probe and gallery images disre-
gards that these images were captured by distinct cameras.
In fact, the small number of samples at each class and the
camera transition problem compose a challenging scenario to
the application of conventional PCA-based methods in person
Re-ID problem.
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Fig. 1. Schematic representation of the novel Kernel HPCA method. Given two blocks of data (A and B), Kernel HPCA computes a nonlinear mapping
function (Φ) to a high-dimensional space where linear projections to a low-dimensional common subspace are computed. These projections, which seek for a
consensual direction between data blocks, are efficiently computed using a “kernel trick”. Therefore, we can successfully match samples from different blocks
projecting them onto the learned subspace.

A possible solution to tackles the person Re-ID problem is
to use multiblock multivariate models [26] to learn a common
subspace where the direct comparison between probe and
gallery images results in a high matching performance. These
models have been employed when additional information is
available for grouping variables in a meaningful blocks (e.g,
different camera views). Consensus PCA (CPCA) [27] and
Hierarchical PCA (HPCA) [28] are two multiblock extensions
of PCA that seek for a consensus direction among all the
blocks and are useful to compare several descriptors measured
on the same object. Despite being common in chemomet-
rics [28], CPCA and HPCA methods are not well known in
computer vision community. To the best of our knowledge,
the method proposed by Qiu et al. [29] to detect changes in
satellite images using principal components is the unique effort
to tackle a computer vision problem using multiblock PCA.

We evaluate CPCA and HPCA as statistical methods to learn
a common subspace where we match probe and gallery images
using a simple nearest neighbor method. Experimental results
demonstrate that both methods reach results comparable with
state-of-the-art linear subspace learning methods at two widely
used datasets (VIPeR and PRID450S). However, since CPCA
and HPCA are linear models and images of the same person at
two distinct cameras indicate a strong nonlinear relationship,
we propose a nonlinear extension of Hierarchical PCA, which
we name Kernel Hierarchical PCA (Kernel HPCA).

The method proposed in this work is a nonlinear extension
of multiblock HPCA that pursues a consensus direction be-
tween block of variables (see Fig. 1). Differently from HPCA,
this direction is computed in a high-dimensional feature space
obtained by a nonlinear transformation of input variables.
Therefore, Kernel HPCA captures high-order correlation be-
tween input variables when learning projections to a common
subspace that tackles dimensionality reduction and camera
transition problems. Furthermore, we propose an efficient
algorithm to compute the principal components using the
“kernel trick” and Nonlinear Iterative PArtial Least Squares
(NIPALS) algorithm. Experimental results demonstrate that

Kernel HPCA represents a great improvement when compared
to Kernel PCA and reaches comparable results with a state-
of-the-art kernel subspace learning methods.

To describe the multiblock PCA (Section II) and the novel
Kernel HPCA (Section III) methods we use the following
notation. Bold lower-case letters denote vectors and bold
upper-case letters denote matrices (e. g., z and Z, respectively).
Furthermore, we represent the training data from data blocks
A and B using matrices Xa, Xb ∈ Rn×m, respectively, where
the ith row in Xa and Xb correspond to feature descriptors
extracted from the ith object. In person Re-ID, that means we
have labeled image pairs from both cameras, corresponding to
the supervised Re-ID scenario. At testing stage, we represent
a new sample from data block A and B (e.g, images captured
by the same camera) as vectors x̂a, x̂b ∈ Rm, respectively.

II. CONSENSUS PCA AND HIERARCHICAL PCA

Despite being widely employed in chemometrics and bio-
chemical process monitoring [26], Consensus PCA (CPCA)
and Hierarchical PCA (HPCA) are not well known by the pat-
tern recognition community. Therefore, this section provides
an introduction to these multiblock PCA methods. A more
deep discussion can be found in [26].

CPCA and HPCA are useful when there is a meaningful
division of data into blocks. A typical example corresponds
to multiple measures of the same object (e.g, images of the
same subject captured by multiple cameras). To enable a better
understanding, we present a two-block NIPALS algorithm and
the description of these methods. However, it is important to
highlight that these methods are able to handle multiple data
blocks, not limited to two.

Let Xa and Xb be two blocks of data, CPCA starts with a
super score t ∈ Rn, which is an initial guess of consensus
and can be a column of these blocks. Then, this super score
is regressed on blocks Xa and Xb to compute the loadings
wa, wb ∈ Rm. Loadings wa and wb are normalized to length
one to compute the respective block scores sa, sb ∈ Rn that
are combined in a super block S ∈ Rn×2. The super score t



Algorithm 1: Consensus PCA (CPCA)
input : Xa, Xb matrices and the number of factors (f )

1 randomly initialize t
2 for i=1 to f do
3 while t do not converge do
4 wa = X>a t/t>t wa ← wa

‖wa‖
5 wb = X>b t/t>t wb ← wb

‖wb‖
6 sa = Xawa

7 sb = Xbwb

8 S = [sa, sb]

9 w = S>t/t>t w← w
‖w‖

10 t = Sw
11 end
12 wa = X>a t/t>t
13 wb = X>b t/t>t
14 Xa = Xa − tw>a
15 Xb = Xb − tw>b
16 end

is regressed on the super block S to obtain the super weight
w ∈ Rm, which is normalized to length one. Then, we update
the value of super score t by projecting the super block S onto
super weight w. This process repeats until the convergence
of super score t to a predefined precision. Thus, while block
scores (sa and sb) are resultant of block variables, the super
score t is derived using all variables. After the convergence,
block variables Xa and Xb are deflated to obtain a new score
vector at the next iterations.

Algorithm 2: Hierarchical PCA (HPCA)
input : Xa, Xb matrices and the number of factors (f )

1 randomly initialize t
2 for i=1 to f do
3 while t do not converge do
4 wa = X>a t
5 sa = Xawa sa ← sa

‖sa‖
6 wb = X>b t
7 sb = Xbwb sb ← sb

‖sb‖
8 S = [sa, sb]

9 w = S>t
10 t = Sw t← t

‖t‖
11 end
12 Xa = Xa − tw>a
13 Xb = Xb − tw>b
14 end

NIPALS algorithms 1 and 2 compute CPCA and HPCA, re-
spectively. The main difference between these two approaches
is in normalization step. While CPCA normalizes the load-
ings, HPCA applies a normalization in the scores. Therefore,
loadings (CPCA) and scores (HPCA) from the same block are
orthonormal.

Let Wa ∈ Rm×f be a projection matrix obtained by

storing the loading vector wa computed at each iteration of
Algorithm 1. Similarly, T ∈ Rn×f is constructed storing the
super scores t. Due to the normalization and deflation steps of
CPCA, Wa matrix is orthonormal (W>a Wa = I). Therefore,
starting from the regression of super score on data block Xa,
we can obtain a closed-form for T as

Xa = TW>a ,
XaWa = TW>a Wa,

T = XaWa

(1)

and compute the super score t̂a for the testing sample x̂a as

t̂a = x̂aWa. (2)

This vector corresponds to projections of x̂a to a common
latent subspace in the CPCA method. Similarly, for a testing
sample x̂b, we can compute the super score t̂b using a
projection matrix Wb as

t̂b = x̂bWb. (3)

In HPCA method, T is a orthonormal matrix (T>T = I).
Therefore, the closed-form solution of T is obtained as

Xa = TW>a ,
XaWa = TW>a Wa,

T = XaWa(W>a Wa)−1,

(4)

where Wa can be computed as

Xa = TW>a ,
T>Xa = T>TW>a ,

Wa = X>a T.
(5)

Thus, combining Equations 4 and 5, we obtain the super scores
t̂a for x̂a as

t̂a = x̂aX>a T(T>XaX>a T)−1. (6)

Similarly, we can compute the super scores t̂b for a testing
sample x̂b using Xb in Equation 6.

In this work, we assume that the learned common subspace
deals with appearance changes caused by the data capture
executed by different cameras. Therefore, it is possible to
compute the similarity between individuals x̂a and x̂b using
the super scores t̂a and t̂b in a simple nearest neighbor method.
Experimental results reinforce our hypothesis.

The complex appearance changes in images of the same
individual captured by distinct cameras and the high matching
performance of recent nonlinear person Re-ID models [6],
[19] suggest that we can reach improved results using a
nonlinear extension of multiblock PCA methods. Therefore,
in Section III, we present a novel kernel extension to HPCA
model, which we call Kernel HPCA. To the best of our
knowledge, this is the first work to propose a kernel extension
to a multiblock PCA method.



III. PROPOSED METHOD

In this section, we describe the proposed Kernel Hierarchi-
cal PCA (Kernel HPCA) method. Kernel HPCA relates data
blocks nonlinearly with principal components to obtain block
scores (sa and sb). Therefore, our proposed method captures
high-order correlation between input variables to learn the
common latent subspace. Furthermore, we present an efficient
derivation of NIPALS algorithm to iteratively compute the
principal components (or factors) of Kernel HPCA.

Assuming a nonlinear transformation of the input variables
to a feature space F , i.e, ΦΦΦ : xi ∈ Rm → ΦΦΦ(xi) ∈ F
and representing all mapped vectors by ΦΦΦ, we can use
the “kernel trick” to avoid explicitly mapping of data to
a high-dimensional space substituting this cross-product by
K = ΦΦΦΦΦΦ>, where K ∈ Rn×n is the kernel Gram matrix.
Particularly, we define the kernel Gram matrices Ka and
Kb to represent the application of a kernel function using
samples from blocks A and B, respectively. Thus, combining
rows 4 and 5 from Algorithm 2 and applying the nonlinear
transformation, we obtain that

sa = XaX>a t,
sa = ΦΦΦaΦΦΦ>a t,
sa = Kat.

(7)

Likewise, we rewrite rows 6 and 7 from Algorithm 2 as

sb = Kbt. (8)

Then, manipulating equations in 5, we derive a rank-one
approximation of kernel Gram matrix Ka as

XaX>a ≈ tt>XaX>a ,
ΦΦΦaΦΦΦ>a ≈ tt>ΦΦΦaΦΦΦ>a ,

Ka ≈ tt>Ka.

(9)

An analogous rank-one approximation to kernel Gram matrix
Kb results in

Kb ≈ tt>Kb. (10)

Therefore, the rank-one deflation of kernel matrices Ka and
Kb are, respectively,

Ka = Ka − tt>Ka and

Kb = Kb − tt>Kb.
(11)

Algorithm 3 presents our Kernel HPCA method. Kernel
HPCA is based on the NIPALS algorithm for computation of
Hierarchical PCA (see Algorithm 2) with the required modifi-
cations to efficiently handle with the nonlinear transformation
of input variables. Similarly to HPCA, Kernel HPCA computes
an orthonormal matrix T ∈ Rm×f whose columns store the
super scores t obtained at each iteration. Thus, using the
nonlinear mapping, we compute the super score t̂a for a new
vector x̂a from block A as

t̂a = ΦΦΦ(x̂a)ΦΦΦ>a T(T>ΦΦΦaΦΦΦ>a T)−1. (12)

Algorithm 3: Kernel Hierarchical PCA (Kernel HPCA).
input : Ka, Kb and the number of factors (f )

1 randomly initialize t
2 for i=1 to f do
3 while t do not converge do
4 sa = Kat, sa ← sa

‖sa‖
5 sb = Kbt, sb ← sb

‖sb‖
6 S = [sa, sb]

7 w = S>t
8 t = Sw t← t

‖t‖
9 end

10 Ka ← Ka − tt>Ka

11 Kb ← Kb − tt>Kb

12 end

Furthermore, we define Ka(x̂a,Xa) as the computation of ker-
nel function between x̂a and all vectors xa ∈ Xa. Identically,
Kb(x̂b,Xb) denotes the kernel function applied in x̂b and all
vectors xb ∈ Xb. Then, using the “kernel trick”, we rewrite
Equation 12 as

t̂a = Ka(x̂a,Xa)T(T>KaT)−1. (13)

Likewise, we compute t̂b for a new vector x̂b from block B
as

t̂b = Kb(x̂b,Xb)T(T>KbT)−1. (14)

Similarly to HPCA and CPCA, we assume that the learned
subspace handles the camera transition problem and the direct
comparison between samples from different blocks results in
a high performance when using their super scores. However,
due the nonlinear transformation in the input variables, we
believe that the common subspace learned with Kernel HPCA
method is able to handle more complex feature transitions.
Experimental results corroborate our hypothesis with great
improvement when compared with the linear models HPCA
and CPCA.

IV. EXPERIMENTAL RESULTS

In this Section, we assess the matching performance of the
proposed Kernel HPCA method on two widely used datasets
for person Re-ID problem (VIPeR and PRID450S datasets).
First, we describe these datasets and our evaluation protocol
(Section IV-A). Then, we compare different variations of PCA-
based methods for the specific task of subspace learning (Sec-
tion IV-B). We end this section with a comparison between the
proposed Kernel HPCA and state-of-the-art subspace learning
and metric learning methods (Section IV-C). In the following
tables, we use the symbol “*” to indicate a method learned
without supervision (without labeled image pairs).

A. Datasets and Evaluation Protocol

VIPeR Dataset1 [30]. The Viewpoint Invariant Pedestrian
Recognition (VIPeR) dataset contains 632 labeled image pairs

1Available at: https://vision.soe.ucsc.edu/projects



captured by two outdoor cameras. Each camera captures a
single image of each subject (single-shot) and the images
are normalized to 128 × 48 pixels. VIPeR is the most used
dataset for supervised and unsupervised Re-ID. The main
challenges are related to viewpoint changes, illumination and
low-resolution images.

PRID 450S Dataset2 [31]. PRID 450S is a recently released
dataset with more realistic images than VIPeR. It consists
in 450 images pairs of pedestrians captured by two non-
overlapping cameras. Each subject appears in single image
at each camera (single-shot). The main challenges are related
to changes in viewpoint, pose, camera characteristic as well
as significant differences in background and illumination.

Experimental Setup. Similarly to other works in the lit-
erature, we achieve more stable results using ten random
partitions of the dataset in training and testing subsets of
equal sizes and reporting the mean values. In the testing
subset, images from one camera are considered as gallery
and images from the other camera are considered as probe.
The results are reported using the matching performance at
the top-r positions, which corresponds to the number of probe
individuals correctly identified at the first r returned gallery
individuals.

Feature Extraction. To represent images on VIPeR and
PRID450S datasets, we use the combination of hand-crafted
and Convolutional Neural Network (CNN) features in a 35024-
dimensional feature descriptor proposed in [18].

Parameter Setting. To obtain a fair comparison, we use the
same number of principal components (f ) for all multiblock
PCA-based methods. We set f to 100 for linear (CPCA, HPCA
and PCA) and nonlinear models (Kernel HPCA and KPCA)
due the best results obtained in a validation set (random
splits between training and testing sets). Furthermore, we
compute the kernel Gram matrices using exponential χ2 kernel
function, as described in [6], and we match individuals at the
latent subspace using the cosine similarity.

TABLE I
VIPER: TOP RANKED CMC RESULTS.

Method Viper (p=316)
r = 1 r = 5 r = 10 r = 20 r = 30

PCA* 13.7 26.4 36.5 47.7 54.2
PRDC [7] 15.7 38.4 53.9 70.0 -
EIML [4] 22.0 47.5 63.0 78.0 87.0

KISSME [3] 27.0 55.0 70.0 83.0 89.5
CPCA 28.9 63.5 78.9 91.3 95.3

RCCA+RD [8] 30.2 60.0 74.7 86.8 -
ROCCA [9] 30.4 - 75.6 86.6 -

HPCA 31.0 65.2 79.6 90.8 93.9
Prates and Schwartz [5] 32.9 62.3 78.7 87.8 91.6

KPCA* 14.6 29.8 39.7 51.5 58.4
KCCA [6] 37.0 - 85.0 93.0 -

KCCA + CNN Features 39.6 73.8 85.5 93.7 96.6
Kernel HPCA 39.4 73.0 85.1 93.5 96.1

2Available at: https://lrs.icg.tugraz.at/download.php

B. PCA Methods

Compared Methods. We perform a comparison between
linear PCA-based methods: Hierarchical PCA (HPCA), Con-
sensus PCA (CPCA) and the classical PCA. We focus on the
specific task of common subspace learning. In addition, we
compare our Kernel HPCA method with a baseline Kernel
PCA that also learns a common subspace using a nonlinear
transformation of input descriptors. Notice that we do not
compare our method against the Kernel PCA method proposed
in [24] since that method learns a specific model for each
gallery image, while we are interested in learning a common
subspace to the entire dataset.
Discussion. Tables I and II present the experimental results
for VIPeR and PRID450S datasets, respectively. HPCA and
CPCA capture cross-view discriminative information from
labeled image pairs when learning the common subspace,
which justifies the great improvement when compared with
the unsupervised PCA. For instance, HPCA represents a gain
at top-1 rank of 17.3 and 21.9 percentage points when com-
pared to PCA. Therefore, experimental results corroborate our
supposition that multiblock PCA methods are more indicated
to person Re-ID problem than the classical PCA method. In
addition, HPCA performs slightly superior than CPCA, mainly
for the first ranking positions, which favor the choice of HPCA
to propose our kernel extension.

From Tables I and II, we can conclude that KPCA and the
proposed Kernel HPCA obtain higher matching performance
than their linear counterpart PCA and HPCA, respectively. We
attribute these results to the nonlinear transformations in im-
ages captured by two non-overlapping cameras. Furthermore,
the Kernel HPCA presents a significant improvement when
compared to the unsupervised KPCA, which is a consequence
of using labeled image pairs from both cameras to learn the
common subspace. Interestingly, the gain at top-1 rank of
Kernel HPCA when compared to KPCA is 24.8 percentage
points in VIPeR, while it reduces to 9.9 percentage points in
PRID450S. These results are consistent with the difficulty of
these datasets.

C. State-of-the-art Methods

Compared Methods. We compare the proposed Kernel HPCA
method with a supervised PLS approach proposed by Prates
and Schwartz [5], the well-known distance metric learning
methods PRDC [7], KISSME [3] and EIML [4], and subspace
learning approaches RCCA [8], ROCCA [9] and KCCA [6].
For KCCA, we provide the results reported by the authors
(VIPeR) and the results obtained using the code provided by
the authors and the features described in Section IV-A, which
we denote as KCCA + CNN features in the tables. Notice that
some approaches are missing in Table II because they neither
provide their code nor results for the dataset PRID450S.
Discussion. Considering VIPeR (Table I) and PRID450S
(Table II) datasets, Kernel HPCA reaches comparable results
when compared to KCCA, which is the state-of-the-art on
nonlinear subspace learning method in person Re-ID literature.



However, while KCCA requires more than 300 factors, Kernel
HPCA requires only 100, which demonstrates its efficient
combination of dimensionality reduction and subspace learn-
ing. Furthermore, when compared to other subspace learning
and metric learning methods, we obtain higher matching
performance. We attribute this improvement to the nonlinear
mapping and the multiblock analysis that allow our model to
learn more complex cross-view discriminant information.

TABLE II
PRID450S: TOP RANKED CMC RESULTS.

Method PRID450S (p=225)
r = 1 r = 5 r = 10 r = 20 r = 30

PCA* 23.0 45.5 59.7 71.6 79.5
Prates and Schwartz [5] 29.3 52.5 63.1 75.0 82.1

KISSME [3] 33.0 59.8 71.0 79.0 84.5
EIML [4] 35.0 58.5 68.0 77.0 83.0

CPCA 39.6 69.3 82.2 90.2 93.8
HPCA 44.9 73.8 83.3 91.5 95.0

KPCA* 42.9 67.7 76.6 84.7 89.5
Kernel HPCA 52.2 80.9 92.8 94.4 96.8

KCCA + CNN Features 52.8 80.9 89.0 95.1 97.2

V. CONCLUSIONS AND FUTURE WORKS

This paper addressed person Re-ID problem using multi-
block PCA methods. Experimental results showed that Hi-
erarchical and Consensus PCA methods are sucessful for
person Re-ID problem. For instance, they reach comparable
results when compared to linear subspace learning meth-
ods. However, they cannot deal with the nonlinear feature
transformations between distinct camera-views. Therefore, we
proposed a kernel extension of HPCA method, called Kernel
HPCA. According to experimental results, the Kernel HPCA is
comparable with KCCA, which is the state-of-the-art nonlinear
subspace learning method. However, Kernel HPCA requires
significantly fewer factors (dimensions) than KCCA method.

As future works, we intend to evaluate the performance of
Kernel HPCA method at other multimodal problems, such as
sketches and mugshot photos matching [32].
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