Skip to content Skip to footer

Resultados de Reidentificação de Pessoa

[trx_title align=”center” color=”#000000″ top=”null”]

Resultados de Reidentificação de Pessoa

[/trx_title]

Esta página mostra resultados encontrados na literatura para vários conjuntos de dados de identificação de pessoas (classificar por rank-1 CMC). Se você gostaria de ter seus resultados publicados adicionados nas tabelas a seguir, envie um e-mail para Raphael Prates com o link (ou o pdf) para o seu trabalho e os resultados a serem relatados. Até agora, tabulamos os resultados para os seguintes conjuntos de dados.

  1. VIPeR dataset
  2. PRID 450S dataset
  3. CUHK 01 dataset
  4. ETHZ dataset (sequences #1, #2 and #3)
  5. iLIDS-VID dataset
  6. PRID-2011

Code Nós publicamos os códigos que implementados nos nossos trabalhos (veja a lista abaixo). Uma breve descrição, curvas CMC e o link para download estão disponíveis nos links a seguir.

Nossos códigos

Dataset VIPeR 

 

Método r = 1 r = 5 r = 10 r = 20 r = 30 Ano
SCSP [38] 53.5 82.6 91.5 96.6 2016
Kernel X-CRC [48] 51.6 80.8 89.4 95.3 97.4 2016
FNN [35] 51.1 81.0 91.4 96.9 2016
Cheng et al. [43] 47.8 74.7 84.8 91.1 94.3 2016
LSSL [50] 47.8 77.9 87.6 94.2 2016
Paisitkriangkrai et al. [2] 44.9 76.3 88.2 94.9 2015
Chen et al. [3] 43.0 75.2 87.3 94.8 2015
LSSCDL [39] 42.7 84.3 91.9 2016
Zhang et al. [36] 42.3 71.5 82.9 92.1 2016
NLML[41] 42.3 71.0 85.2 94.2 2016
Shi et al. [4] 41.6 71.9 86.2 95.1 2015
DRML [46] 41.1 79.1 91.3 2016
MED_VL [49] 41.1 71.7 83.2 91.7 2016
Ding et al. [5] 40.5 60.8 70.4 84.4 90.9 2015
WARCA [40] 40.2 68.2 80.7 91.1 2016
Liao et al. [6] 40.0 68.0 80.5 91.1 95.5 2015
Kernel HPCA [44] 39.4 73.0 85.1 93.5 96.1 2016
ECM [7] 38.9 67.8 78.4 88.9 2015
Xiao et al. [37] 38.6 2016
Deep Ranking [34] 38.4 69.2 81.3 90.4 94.1 2016
Chen et al. [8] 38.4 69.2 81.3 90.4 2015
SCNCD [9] 37.8 68.5 81.2 90.4 94.2 2014
Yang et al. [10] 37.6 68.1 90.2 94.0 2014
MKML [47] 37.0 69.9 80.7 90.1 2016
RLML [11] 35.3 67.4 81.6 90.8 2015
Ye et al. [12] 35.0 62.9 72.0 82.5 2015
Shen et al. [13] 34.8 68.7 82.3 91.8 94.9 2015
Ahmed et al. [14] 34.8 63.5 75.0 80.0 2015
DRML [15] 34.2 78.8 90.2 2015
Li et al. [16] 34.0 64.2 77.5 88.6 2015
X-KPLS [45] 33.1 67.7 81.0 90.8 94.2 2016
Prates and Schwartz [17] 32.9 62.3 78.7 87.8 91.6 2015
Xiong et al. [18] 32.3 65.8 79.7 90.9 2014
CBRA* [1] 31.2 60.8 74.3 85.9 91.2 2015
Zeng et al. [19] 31.2 56.0 70.0 82.0 86.5 2015
Ma et al. [20] 31.1 58.3 70.7 82.4 89.9 2014
Zhao et al.[21] 30.1 52.3 65.8 2013
LADF [22] 30.0 64.0 80.0 92.0 96.5 2013
Zhang et al. [23] 29.8 62.5 73.5 2014
Wang et al. [42] 29.1 59.2 74.4 83.8 2016
Mid-Level Filters [24] 29.1 52.5 65.9 79.9 2014
Region-based Salience [25] 28.5 50.6 64.6 76.3 2015
Yi et al. [26] 28.2 59.3 73.4 86.4 92.3 2014
KISSME [27] 27.0 55.0 70.0 83.0 89.5 2012
Zhao et al. [28] 26.7 50.7 62.4 76.4 2013
LDFV [29] 26.5 56.4 70.9 84.6 2012
Leng et al. [30] 23.8 53.2 70.2 84.0 90.4 2015
EIML [31] 22.0 47.5 63.0 78.0 87.0 2014
SDALF [32] 19.9 40.0 49.4 65.7 75.6 2010
PRDC [33] 15.7 38.4 53.9 70.0 2011
VIPeR (p=316) – top ranked CMC results (in %)

(*) Lamentamos informar que nossos resultados anteriores apresentam um erro no código. Atualizamos os resultados e o código (incluímos a extração de recursos).

[1] Raphael Prates, William R. Schwartz, “CBRA – Color-Based Ranking Aggregation for Person Re-Identification,” in IEEE ICIP, 2015.

[2] Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel,  “Learning to rank in person re-identification with metric ensembles,” in IEEE CVPR, 2015.

[3] Ying-Cong Chen, Wei-Shi Zheng, Jianhuang Lai,  “Mirror Representation for Modeling View-Specific Transform in Person Re-Identification,” In IJCAI – International Joint Conference on Artificial Intelligence, 2015.

[4] Zhiyuan Shi, Timothy M. Hospedales, Tao Xiang, “Transferring a Semantic Representation for Person Re-Identification and Search,” in IEEE CVPR 2015.

[5] Shengyong Ding, Liang Lin, Guangrun Wang, Hongyang Chao, “Deep feature learning with relative distance comparison for person re-identification.” Pattern Recognition, Volume 48, Issue 10, October 2015, Pages 2993-300.

[6]  Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. “Person Re-identification by Local Maximal Occurrence Representation and Metric Learning.” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[7] Xiaokai Liu, Hongyu Wang, Yi Wu, Jimei Yang, and MingHsuan Yang, “An ensemble color model for human reidentification,” in IEEE Winter Conference on Applications of Computer Vision, 2015.

[8]  Shi-Zhe Chen, Chun-Chao Guo, Jian-Huang Lai. Deep Ranking for Person Re-identification via Joint Representation Learning. arXiv, 2015.

[9]  Yang Yang, Jimei Yang, Junjie Yan, Shengcai Liao, Dong Yi, and Stan Z Li, “Salient color names for person reidentification,” in ECCV, pp. 536–551. 2014.

[10]  Yang Yang, Shengcai Liao, Zhen Lei, Dong Yi, and Stan Z. Li, “Color models and weighted covariance estimation for person re-identification,” in IAPR ICPR, Aug 2014, pp. 1874–1879.

[11] Venice Erin Liong, Jiwen Lu, Yongxin Ge, “Regularized local metric learning for person re-identification.” Pattern Recognition Letters, 2015.

[12] Mang Ye, Jun Chen, Qingming Leng, Chao Liang, Zheng Wang, and Kaimin Sun, “Coupled-view based ranking optimization for person re-identification.” 21st International Conference on Multimedia Modelling, MMM 2015.

[13] Yang Shen, Weiyao Lin, Junchi Yan, Mingliang Xu, Jianxin Wu, Jingdong Wang, “Person Re-identification with Correspondence Structure Learning.” IEEE International Conference on Computer Vision (ICCV), 2015.

[14] Ejaz Ahmed, Michael Jones, Tim K. Marks. ” An Improved Deep Learning Architecture for Person Re-Identification.” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3908-3916.

[15]  Liong, V.E.,Yongxin Ge, Jiwen Lu, “Discriminative regularized metric learning for person re-identification,” inInternational Conference on Biometrics (ICB), 2015.

[16]  Sheng Li, Ming Shao, Yun Fu. Cross-View Projective Dictionary Learning for Person Re-identification. In IJCAI – International Joint Conference on Artificial Intelligence, 2015.

[17]  Raphael Prates, William R. Schwartz, “Appearance-Based Person Re-identification by Intra-Camera Discriminative Models and Rank Aggregation,” in International Conference on Biometrics (ICB), 2015.

[18]  Fei Xiong, Mengran Gou, Octavia Camps, Mario Sznaier, “Person Re-Identification using Kernel-based Metric Learning Methods,” in ECCV 2014.

[19] Mingyong Zeng, Zemin Wu, Chang Tian, Lei Zhang, Lei Hu. “Efficient Person Re-identification by Hybrid Spatiogram and Covariance Descriptor.” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2015, pp. 48-56.

[20]  Bingpeng Ma, Yu Su, Frédéric Jurie. “Covariance descriptor based on bio-inspired features for person re-identification and face verification.” Image and Vision Computing, Volume 32, Issues 6–7, June–July 2014, Pages 379-390.

[21]  Rui Zhao, Wanli Ouyang and Xiaogang Wang. “Person re-identification by salience matching.”  IEEE International Conference on Computer Vision (ICCV), 2013.

[22]  Zhen Li, Shiyu Chang, Feng Liang, Huang, T.S., Liangliang Cao and Smith, J.R. “Learning Locally-Adaptive Decision Functions for Person Verification.” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[23]  Ziming Zhang , Yuting Chen, Venkatesh Saligrama. A Novel Visual Word Co-occurrence Model for Person Re-identification. ECCV 2014.

[24]  Rui Zhao, Wanli Ouyang, Xiaogang Wang. Learning Mid-level Filters for Person Re-identification. CVPR 2014.

[25]  Yanbing Geng, Hai-Miao Hu, Guodong Zeng, Jin Zheng. “A person re-identification algorithm by exploiting region-based feature salience.” Journal of Visual Communication and Image Representation, Volume 29, May 2015, Pages 89-102.

[26]  Dong Yi, Zhen Lei, Shengcai Liao, Stan Z. Li, “Deep Metric Learning for Person Re-identification“. International Conference on Pattern Recognition (ICPR), 2014, pp. 34-39.

[27] Martin Koestinger, Martin Hirzer, Paul Wohlhart, Peter M. Roth, and Horst Bischof, “Large scale metric learning from equivalence constraints,” in IEEE CVPR, 2012.

[28] Rui Zhao, Wanli Ouyang, Xiaogang Wang. “Unsupervised Salience Learning for Person Re-identification,” in IEEE CVPR, 2013.

[29] Bingpeng Ma, Yu Su, Frédéric Jurie. “Local Descriptors encoded by Fisher Vectors for Person Re-identification,” in ECCV Workshops and Demonstrations, 2012.

[30] Qingming Leng, Ruimin Hu, Chao Liang, Yimin Wang, Jun Chen, “Person re-identification with content and context re-ranking .” Multimedia Tools and Applications,Volume 74, Issue 17, pp 6989-7014.

[31] M. Hirzer, P.M. Roth, and H. Bischof, “Person re-identification by efficient impostor-based metric learning,” in IEEE AVSS, Sept 2012, pp. 203–208.

[32]  Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M. Person Re-Identification by Symmetry-Driven Accumulation of Local Features. CVPR 2010.

[33]  Wei-Shi Zheng, Shaogang Gong, Tao Xiang. “Person re-identification by probabilistic relative distance comparison,” in Computer Vision and Pattern Recognition (CVPR), 2011.

[34] Chen, Shi-Zhe, Chun-Chao Guo, and Jian-Huang Lai. “Deep Ranking for Person Re-identification via Joint Representation Learning ” in Transactions on Image Processing (TIP) 2016

[35] Wu, S., Chen, Y. C., Li, X., Wu, A. C., You, J. J., & Zheng, W. S. “An enhanced deep feature representation for person re-identification ” in IEEE WACV 2016

[36] Zhang, Li., Xiang, T., Gong, S.“Learning a Discriminative Null Space for Person Re-identification ” in CVPR 2016

[37] Xiao, T., Li, H., Ouyang, W. and Wang, X. “Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification” in CVPR 2016

[38] Dapeng Chen, Zejian Yuan, Badong Chen, Nanning Zheng. “Similarity Learning with Spatial Constraints for Person Re-identification ” in CVPR 2016

[39] Ying Zhang, Baohua Li, Huchuan Lu, Atshushi Irie and Xiang Ruan “Sample-Specific SVM Learning for Person Re-identification ” in CVPR 2016

[40] Cijo Jose and François Fleuret. “Scalable Metric Learning viaWeighted Approximate Rank Component Analysis ” in CVPR 2016

[41] Siyuan Huang, Jiwen Lu, Jie Zhou, Anil K. Jain. “Nonlinear Local Metric Learning for Person Re-identification ” in CVPR 2016

[42] Wei Wang, Ali Taalimi, Kun Duan, Rui Guo and Hairong Qi. “Learning Patch-Dependent Kernel Forest for Person Re-Identification ” in WACV 2016

[43] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, Nanning Zheng. “Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function ” in CVPR 2016

[44] Raphael Prates and William Robson Schwartz. “Kernel Hierarchical PCA for Person Re-Identification” in ICPR 2016

[45] Raphael Prates, Marina Oliveira and William Robson Schwartz. “Kernel Partial Least Squares for Person Re-Identification” in AVSS 2016

[46] Wenbin Yao, Zhenyu Weng, Yuesheng Zhu. ” Diversity Regularized Metric Learning For Person Re-Identification ” in ICIP 2016

[47] Muhammad Adnan Syed, Jianbin Jiao ” Multi-Kernel Metric Learning For Person Re-Identification ” in ICIP 2016

[48] Raphael Prates and William Robson Schwartz ” Kernel Cross-View Collaborative Representation based Classification for Person Re-Identification ” in Arxiv 2016

[49] Yang Yang, Zhen Lei, Shifeng Zhang, Hailin Shi, Stan Z. Li ” Association for the Advancement of Artificial Intelligence ” AAAI 2016

[50] Yang Yang, Shengcai Liao, Zhen Lei, Stan Z. Li ” Large Scale Similarity Learning Using Similar Pairs for Person Verification ” AAAI 2016

Dataset PRID 450S

 

Método Rank 1 Rank 5 Rank 10 Rank 20 Rank 30 Ano
Kernel X-CRC [16] 68.8 91.2 95.9 98.4 99.0 2016
FFN [10] 66.6 86.8 92.8 96.9 2016
LSSCDL[11] 60.5 88.6 93.6 2016
DRML [15] 56.4 82.2 90.2 2016
Chen et al. [2] 55.4 79.3 87.8 93.9 2015
X-KPLS [13] 52.8 82.1 90.0 95.4 97.3 2016
Kernel HPCA [14] 52.8 80.9 89.0 95.1 97.2 2016
MED_VL [17] 45.9 73.0 82.9 91.1 2016
Shi et al. [3] 44.9 71.7 77.5 86.7 2015
Shen et al. [4] 44.4 71.6 82.2 89.8 93.3 2015
ECM [5] 41.9 66.3 76.9 84.9 2015
SCNCD [7] 41.6 68.9 79.4 87.8 95.4 2014
Yang et al. [6] 40.6 80.7 90.0 92.4 2014
EIML [8] 35.0 58.5 68.0 77.0 83.0 2012
KISSME [9] 33.0 59.8 71.0 79.0 84.5 2012
CBRA* [1] 26.4 57.1 71.0 83.2 88.8 2015
WARCA [12] 24.6 55.5 2016
PRID 450S (p=225) – top ranked CMC results (in %)

(*) Lamentamos informar que nossos resultados anteriores apresentam um erro no código. Atualizamos os resultados e o código (incluímos a extração de recursos).

[1] Raphael Prates, William R. Schwartz, “CBRA – Color-Based Ranking Aggregation for Person Re-Identification,” in IEEE ICIP, 2015.

[2] Ying-Cong Chen, Wei-Shi Zheng, Jianhuang Lai,  “Mirror Representation for Modeling View-Specific Transform in Person Re-Identification,” In IJCAI – International Joint Conference on Artificial Intelligence, 2015.

[3] Zhiyuan Shi, Timothy M. Hospedales, Tao Xiang, “Transferring a Semantic Representation for Person Re-Identification and Search,” in IEEE CVPR 2015.

[4] Yang Shen, Weiyao Lin, Junchi Yan, Mingliang Xu, Jianxin Wu, Jingdong Wang, “Person Re-identification with Correspondence Structure Learning.” IEEE International Conference on Computer Vision (ICCV), 2015.

[5] Xiaokai Liu, Hongyu Wang, Yi Wu, Jimei Yang, and MingHsuan Yang, “An ensemble color model for human reidentification,” IEEE Winter Conference on Applications of Computer Vision, 2015.

[6] Yang Yang, Shengcai Liao, Zhen Lei, Dong Yi, and Stan Z. Li, “Color models and weighted covariance estimation for person re-identification,” in IAPR ICPR, Aug 2014, pp. 1874–1879.

[7] Yang Yang, Jimei Yang, Junjie Yan, Shengcai Liao, Dong Yi, and Stan Z Li, “Salient color names for person reidentification,” in ECCV, pp. 536–551. 2014.

[8] M. Hirzer, P.M. Roth, and H. Bischof, “Person re-identification by efficient impostor-based metric learning,” in IEEE AVSS, Sept 2012, pp. 203–208.

[9] Martin Koestinger, Martin Hirzer, Paul Wohlhart, Peter M. Roth, and Horst Bischof, “Large scale metric learning from equivalence constraints,” in IEEE CVPR, 2012.

[10] Wu, S., Chen, Y. C., Li, X., Wu, A. C., You, J. J., & Zheng, W. S. An enhanced deep feature representation for person re-identification ” in IEEE WACV 2016

[11] Ying Zhang, Baohua Li, Huchuan Lu, Atshushi Irie and Xiang Ruan Sample-Specific SVM Learning for Person Re-identification ” in CVPR 2016

[12] Cijo Jose and François Fleuret. Scalable Metric Learning viaWeighted Approximate Rank Component Analysis ” in CVPR 2016

[13] Raphael Prates and William Robson Schwartz.  ” Kernel Hierarchical PCA for Person Re-Identification ” in ICPR 2016

[14] Raphael Prates, Marina Oliveira and William Robson Schwartz. ” Kernel Partial Least Squares for Person Re-Identification ” in AVSS 2016

[15] Wenbin Yao, Zhenyu Weng, Yuesheng Zhu. “Diversity Regularized Metric Learning For Person Re-Identification ” in ICIP 2016

[16] Raphael Prates and William Robson Schwartz  “Kernel Cross-View Collaborative Representation based Classification for Person Re-Identification ” in Arxiv 2016

[17] Yang Yang, Zhen Lei, Shifeng Zhang, Hailin Shi, Stan Z. Li “Association for the Advancement of Artificial Intelligence ” AAAI 2016

Dataset CUHK 01

Método Rank 1 Rank 5 Rank 10 Rank 20 Rank 30 Ano
Xiao et al. [15] 66.6 2016
LSSCDL [16] 66.0 2016
WARCA [17] 65.6 85.3 90.5 95.0 2016
Kernel X-CRC [20] 61.2 80.9 87.3 93.2 95.6 2016
Li et al. [2] 59.5 81.3 89.7 93.1 2015
Cheng et al. [18] 53.7 84.3 91.0 96.3 98.3 2016
Paisitkriangkrai et al. [3] 51.9 75.1 83.0 89.4 2015
Chen et al. [7] 50.4 75.9 84.0 91.3 2015
Ahmed et al. [1] 47.5 71.0 80.0 2015
Chen et al. [4] 40.4 64.6 75.3 84.1 2015
Mid-Level Filters [9] 34.3 55.1 65.0 74.9 80.3 2014
Zhao et al. [10] 28.4 45.8 55.7 67.9 74.9 2013
Li et al. [8] 20.0 43.5 56.0 69.3 77.3 2012
SDALF [11] 9.9 22.6 30.3 41.0 2010
CUHK 01 (p=486 M=1) – top ranked CMC results (in %)

(*) Esses métodos usaram um protocolo de avaliação individual. Eles selecionaram aleatoriamente uma das imagens de teste para classificar a galeria.

Method Rank 1 Rank 5 Rank 10 Rank 20 Rank 30 year
Zhang et al. [14] 65.0 85.0 89.9 94.4 2016
Liao et al. [5] 63.2 84.0 90.0 93.7 96.0 2015
FFN [13] 55.5 78.4 83.7 92.6 2016
Deep Ranking [12] 50.4 75.9 84.1 91.3 99.3 2016
Zhang et al. [6] 44.0 70.4 80.0 2014
MKML [19] 31.2 57.9 70.7 81.4 2016
CUHK 01 (p=486 M=2) – top ranked CMC results (in %)

(*) Esses métodos usaram um protocolo de avaliação multi-shot. Eles empregaram as duas imagens de teste disponíveis para calcular as pontuações e classificar as imagens da galeria.

[1] Ejaz Ahmed, Michael Jones, Tim K. Marks. An Improved Deep Learning Architecture for Person Re-Identification. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3908-3916.

[2]  Sheng Li, Ming Shao, Yun Fu. Cross-View Projective Dictionary Learning for Person Re-identification. In IJCAI – International Joint Conference on Artificial Intelligence, 2015.

[3] Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel. Learning to rank in person re-identification with metric ensembles. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[4]  Ying-Cong Chen, Wei-Shi Zheng, Jianhuang Lai. Mirror Representation for Modeling View-Specific Transform in Person Re-Identification.  In IJCAI – International Joint Conference on Artificial Intelligence, 2015.

[5]  Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. Person Re-identification by Local Maximal Occurrence Representation and Metric Learning. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015

[6]  Ziming Zhang, Yuting Chen, Venkatesh Saligrama. A Novel Visual Word Co-occurrence Model for Person Re-identification. ECCV 2014.

[7]  Shi-Zhe Chen, Chun-Chao Guo, Jian-Huang Lai. Deep Ranking for Person Re-identification via Joint Representation Learning. arXiv, 2015.

[8]  Wei Li, Rui Zhao, Xiaogang Wang. Human Reidentification with Transferred Metric Learning. ACCV 2012.

[9]  Rui Zhao, Wanli Ouyang, Xiaogang Wang. Learning Mid-level Filters for Person Re-identification. CVPR 2014.

[10]  Rui Zhao, Wanli Ouyang, Xiaogang Wang. Person re-identification by salience matching. ICCV 2013.

[11]  Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M. Person Re-Identification by Symmetry-Driven Accumulation of Local Features. CVPR 2010.

[12] Chen, Shi-Zhe, Chun-Chao Guo, and Jian-Huang Lai. Deep Ranking for Person Re-identification via Joint Representation Learning ” in Transactions on Image Processing (TIP) 2016

[13] Wu, S., Chen, Y. C., Li, X., Wu, A. C., You, J. J., & Zheng, W. S. An enhanced deep feature representation for person re-identification ” in IEEE WACV 2016

[14] Zhang, Li., Xiang, T., Gong, S.Learning a Discriminative Null Space for Person Re-identification ” in CVPR 2016

[15] Xiao, T., Li, H., Ouyang, W. and Wang, X. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification” in CVPR 2016

[16] Ying Zhang, Baohua Li, Huchuan Lu, Atshushi Irie and Xiang Ruan Sample-Specific SVM Learning for Person Re-identification ” in CVPR 2016

[17] Cijo Jose and François Fleuret. Scalable Metric Learning viaWeighted Approximate Rank Component Analysis ” in CVPR 2016

[18] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, Nanning Zheng. “Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function ” in CVPR 2016

[19] Muhammad Adnan Syed, Jianbin Jiao ” Multi-Kernel Metric Learning For Person Re-Identification ” in ICIP 2016

[20] Raphael Prates and William Robson Schwartz ” Kernel Cross-View Collaborative Representation based Classification for Person Re-Identification ” in Arxiv 2016

Dataset ETHZ (Seq. #1)

Método Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Ano
Martinel et al. [1] 84.0 88.0 91.0 93.0 94.0 2015
Ma et al. [2] 83.0 87.0 90.0 91.0 92.0 2012
Zhao et al. [3] 81.0 86.0 89.0 90.0 92.0 2013
Schwartz & Davis [4] 79.0 85.0 86.0 87.0 88.0 2009
Martinel & Micheloni [5] 78.0 83.0 87.0 88.0 89.0 2014
Hirzer et al. [6] 78.0 84.0 87.0 89.0 90.0 2014
Hirzer et al. [7] 77.0 83.0 87.0 90.0 91.0 2012
Ma et al. [8] 74.0 80.0 83.0 85.0 87.0 2012
Avraham et al. [9] 68.0 76.0 82.0 86.0 87.0 2012
SDALF [10] 65.0 73.0 77.0 79.0 81.0 2010
ETHZ (seq #1) – top ranked CMC results (in %)

Dataset ETHZ (Seq. #2)

Método Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Ano
Martinel et al. [1] 81.0 86.0 90.0 93.0 95.0 2015
Zhao et al. [3] 79.0 84.0 87.0 90.0 91.0 2013
Ma et al. [2] 79.0 84.0 87.0 90.0 91.0 2012
Martinel & Micheloni [5] 77.0 82.0 85.0 86.0 87.0 2014
Hirzer et al. [6] 74.0 81.0 84.0 87.0 89.0 2014
Schwartz & Davis [4] 74.0 79.0 81.0 83.0 84.0 2009
Ma et al. [8] 71.0 79.0 83.0 86.0 88.0 2012
Avraham et al. [9] 70.0 82.0 89.0 91.0 93.0 2012
Hirzer et al. [7] 65.0 77.0 81.0 82.0 86.0 2012
SDALF [10] 64.0 74.0 79.0 83.0 85.0 2010
ETHZ (seq #2) – top ranked CMC results (in %)

Dataset ETHZ (Seq. #3)

Método Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Ano
Martinel et al. [1] 91.0 97.0 99.0 99.0 99.0 2015
Hirzer et al. [6] 91.0 95.0 97.0 98.0 98.0 2014
Ma et al. [2] 91.0 94.0 96.0 97.0 97.0 2012
Avraham et al. [9] 91.0 94.0 96.0 97.0 97.0 2012
Zhao et al. [3] 90.0 95.0 96.0 97.0 98.0 2013
Hirzer et al. [7] 83.0 90.0 92.0 94.0 96.0 2012
Ma et al. [8] 82.0 87.0 90.0 92.0 93.0 2012
Martinel & Micheloni [5] 81.0 85.0 89.0 93.0 94.0 2014
Schwartz & Davis [4] 77.0 81.0 82.0 84.0 85.0 2009
SDALF [10] 76.0 83.0 86.0 88.0 90.0 2010

[1]  Martinel, N., Das, A. , Micheloni, C., Roy-Chowdhury, A.K. Re-Identification in the Function Space of Feature Warps. PAMI, 2015.

[2]  Bingpeng Ma, Yu Su, Frédéric Jurie. Local Descriptors Encoded by Fisher Vectors for Person Re-identification. ECCV 2012.

[3]  Rui Zhao, Wanli Ouyang, Xiaogang Wang. Unsupervised Salience Learning for Person Re-identification. CVPR 2013.

[4]  Schwartz, W.R., Davis, L.S. Learning discriminative appearance-based models using partial least squares. SIBGRAPi 2009.

[5]  Niki Martinel, Christian Micheloni. Sparse Based Matching of Random Patches for Person Re-Identification. ICDSC, 2014.

[6]  Hirzer, M., Roth, P.M., Bischof, H. Person re-identification by efficient impostor-based metric learning. AVSS 2012.

[7]  Martin Hirzer, Peter M. Roth, Martin Köstinger, Horst Bischof. Relaxed Pairwise Learned Metric for Person Re-identification. ECCV 2012.

[8]  Bingpeng Ma, Yu Su and Frederic Jurie. BiCov: a novel image representation for person re-identification and face verification. BMVC 2012.

[9]  Tamar Avraham, Ilya Gurvich, Michael Lindenbaum, Shaul Markovitch. Learning Implicit Transfer for Person Re-identification. ECCV 2012.

[10]  Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M. Person Re-Identification by Symmetry-Driven Accumulation of Local Features.  CVPR 2010.

iLIDS-VID

Método r = 1 r = 5 r = 10 r = 20 r = 30 Ano
McLaughlin et al. [1] 58 84 91 96 2016
TDL [2] 56.3 87.6 95.6 98.3 2016
TAPR [3] 55.0 87.5 93.8 97.2 2016
SI²DL [5] 48.7 81.1 89.2 97.3 2016
DRML [6] 43.1 72.7 82 2016
FAST3D [4] 28.4 54.7 66.7 78.1 2016

[1] McLaughlin, N., Martinez del Rincon, J., & Miller, P. Recurrent Convolutional Network for Video-based Person Re-Identification ” in CVPR 2016

[2] Jinjie You, Ancong Wu, Xiang Li and Wei-Shi Zheng. Top-push Video-based Person Re-identification ” in CVPR 2016

[3] Changxin Gao, Jin Wang, Leyuan Liu, Jin-Gang Yu, and Nong Sang Temporally Aligned Pooling Representation for Video-Based Person Re-Identification ” in ICIP 2016

[4] Changxin Gao, Jin Wang, Leyuan Liu, Jin-Gang Yu, and Nong Sang Temporally Aligned Pooling Representation for Video-Based Person Re-Identification ” in ICIP 2016

[5] Xiaoke Zhu, Xiao-Yuan Jing, Fei Wu, Hui Feng Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics ” in IJCAI 2016

[6] Wenbin Yao, Zhenyu Weng, Yuesheng Zhu. ” Diversity Regularized Metric Learning For Person Re-Identification ” in ICIP 2016

PRID-2011 (Multi-shot)

Método r = 1 r = 5 r = 10 r = 20 r = 30 Ano
SI²DL [5] 76.7 95.6 96.7 98.9 2016
McLaughlin et al. [1] 70 90 95 97 2016
TAPR [3] 68.6 94.6 97.4 98.9 2016
TDL [2] 56.7 80.0 87.6 93.4 2016
FAST3D [4] 31.1 60.3 76.4 88.6 2016

[1] McLaughlin, N., Martinez del Rincon, J., & Miller, P. Recurrent Convolutional Network for Video-based Person Re-Identification ” in CVPR 2016

[2] Jinjie You, Ancong Wu, Xiang Li and Wei-Shi Zheng. Top-push Video-based Person Re-identification ” in CVPR 2016

[3] Changxin Gao, Jin Wang, Leyuan Liu, Jin-Gang Yu, and Nong Sang Temporally Aligned Pooling Representation for Video-Based Person Re-Identification ” in ICIP 2016

[4] Xiaoke Zhu, Xiao-Yuan Jing, Fei Wu, Hui Feng A Fast Adaptive Spatio-temporal 3D Feature For Video-Based Person Re-identification ” in ICIP 2016

[5] Xiaoke Zhu, Xiao-Yuan Jing, Fei Wu, Hui Feng Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics ” in IJCAI 2016

Leave a comment